Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Low-lying states in$$^{54}$$ Cr have been investigated via the$$\alpha $$ -transfer reaction$$^{50}$$ Ti($$^{7}$$ Li,t) at a bombarding energy of 20 MeV. The exclusive$$\alpha $$ -transfer channel is separated from other reaction channels through the appropriate energy gate on the complementary particle, triton. Levels of$$^{54}$$ Cr populated exclusively by the$$\alpha $$ -transfer process could be identified up to$$\approx $$ 5 MeV excitation energy and angular momentum up to$$(8)^{+}$$ , by identifying the corresponding known$$\gamma $$ -rays. These include multiple low-lying non-yrast 2$$^+$$ and 4$$^+$$ states, which would otherwise be unfavorable via fusion evaporation reactions. The feeding-subtracted$$\gamma $$ -ray yields have been extracted to estimate the population of various excited states through the transfer process. The measured integrated transfer cross sections for all the observed yrast and non-yrast states are compared with Coupled Channels calculations usingfrescoto extract the$$\alpha $$ +$$^{50}$$ Ti core spectroscopic factors. For the yrast states, a higher$$\alpha $$ +core overlap is seen for the$$2^+$$ and$$4^+$$ states, while it is seen to be less favorable for the$$6^+$$ and$$(8)^+$$ states when$$\alpha $$ -transfer is considered to occur predominantly as a direct one-step process to the$$^{50}$$ Ti core ground state. The yrast$$2^+$$ , and$$4^+$$ states are predominantly populated by single-step transfer, while for the states with spin$$\ge $$ 5, the possibility of core excitation followed by$$\alpha $$ -transfer shows a larger$$\alpha $$ -core overlap. For the non-yrast$$0^+$$ ,$$2^+$$ , and$$4^+$$ states, single-step transfer shows moderate to small$$\alpha $$ -core overlap. No higher spin non-yrast states are observed.more » « less
- 
            Free, publicly-accessible full text available May 1, 2026
- 
            The rampant occurrence of cybersecurity breaches imposes substantial limitations on the progress of network infras- tructures, leading to compromised data, financial losses, potential harm to individuals, and disruptions in essential services. The current security landscape demands the urgent development of a holistic security assessment solution that encompasses vul- nerability analysis and investigates the potential exploitation of these vulnerabilities as attack paths. In this paper, we propose GRAPHENE, an advanced system designed to provide a detailed analysis of the security posture of computing infrastructures. Using user-provided information, such as device details and software versions, GRAPHENE performs a comprehensive secu- rity assessment. This assessment includes identifying associated vulnerabilities and constructing potential attack graphs that adversaries can exploit. Furthermore, it evaluates the exploitabil- ity of these attack paths and quantifies the overall security posture through a scoring mechanism. The system takes a holistic approach by analyzing security layers encompassing hardware, system, network, and cryptography. Furthermore, GRAPHENE delves into the interconnections between these layers, exploring how vulnerabilities in one layer can be leveraged to exploit vulnerabilities in others. In this paper, we present the end-to-end pipeline implemented in GRAPHENE, showcasing the systematic approach adopted for conducting this thorough security analysis.more » « less
- 
            Abstract An in-beam gamma-ray spectroscopy study of the even–even nucleus92Mo has been carried out using the30Si +65Cu,18O +80Se reactions at beam energies of 120 and 99 MeV, respectively. Angular distribution from the oriented state ratio (RADO) and linear polarization (Δasym) measurements have fixed most of the tentatively assigned spin-parity of the high-energy levels. A large-scale shell-model calculation using the GWBXG interaction has been carried out to understand the configuration and structure of both positive and negative parity states up to the highest observed spin. The high-spin states primarily originate from the coupling of excited proton- and neutron-core structures in an almost stretched manner. The systematics of the energy required to form a neutron particle-hole pair excitation,νg9/2→νd5/2, is discussed. The lifetimes of a few high-spin states have been measured using the Doppler shift attenuation method. Additionally, a qualitative argument is proposed to explain the comparatively strong E1 transition feeding the 7310.9 keV level.more » « lessFree, publicly-accessible full text available December 23, 2025
- 
            ABSTRACT We present the discovery of FRB 20210410D with the MeerKAT radio interferometer in South Africa, as part of the MeerTRAP commensal project. FRB 20210410D has a dispersion measure DM = 578.78 ± 2 $${\rm pc \, cm^{-3}}$$ and was localized to subarcsec precision in the 2 s images made from the correlation data products. The localization enabled the association of the FRB with an optical galaxy at z = 0.1415, which when combined with the DM places it above the 3σ scatter of the Macquart relation. We attribute the excess DM to the host galaxy after accounting for contributions from the Milky Way’s interstellar medium and halo, and the combined effects of the intergalactic medium and intervening galaxies. This is the first FRB that is not associated with a dwarf galaxy to exhibit a likely large host galaxy DM contribution. We do not detect any continuum radio emission at the FRB position or from the host galaxy down to a 3σ rms of 14.4 $$\mu$$Jy beam−1. The FRB has a scattering delay of $$29.4^{+2.8}_{-2.7}$$ ms at 1 GHz, and exhibits candidate subpulses in the spectrum, which hint at the possibility of it being a repeating FRB. Although not constraining, we note that this FRB has not been seen to repeat in 7.28 h at 1.3 GHz with MeerKAT, 3 h at 2.4 GHz with Murriyang, and 5.7 h at simultaneous 2.3 GHz and 8.4 GHz observations with the Deep Space Network. We encourage further follow-up to establish a possible repeating nature.more » « less
- 
            Context.The nearby elliptical galaxy M87 contains one of only two supermassive black holes whose emission surrounding the event horizon has been imaged by the Event Horizon Telescope (EHT). In 2018, more than two dozen multi-wavelength (MWL) facilities (from radio toγ-ray energies) took part in the second M87 EHT campaign. Aims.The goal of this extensive MWL campaign was to better understand the physics of the accreting black hole M87*, the relationship between the inflow and inner jets, and the high-energy particle acceleration. Understanding the complex astrophysics is also a necessary first step towards performing further tests of general relativity. Methods.The MWL campaign took place in April 2018, overlapping with the EHT M87* observations. We present a new, contemporaneous spectral energy distribution (SED) ranging from radio to very high-energy (VHE)γ-rays as well as details of the individual observations and light curves. We also conducted phenomenological modelling to investigate the basic source properties. Results.We present the first VHEγ-ray flare from M87 detected since 2010. The flux above 350 GeV more than doubled within a period of ≈36 hours. We find that the X-ray flux is enhanced by about a factor of two compared to 2017, while the radio and millimetre core fluxes are consistent between 2017 and 2018. We detect evidence for a monotonically increasing jet position angle that corresponds to variations in the bright spot of the EHT image. Conclusions.Our results show the value of continued MWL monitoring together with precision imaging for addressing the origins of high-energy particle acceleration. While we cannot currently pinpoint the precise location where such acceleration takes place, the new VHEγ-ray flare already presents a challenge to simple one-zone leptonic emission model approaches, and it emphasises the need for combined image and spectral modelling.more » « lessFree, publicly-accessible full text available December 1, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available